Fluorescent neuroactive probes based on stilbazolium dyes.

نویسندگان

  • Adrienne S Brown
  • Lisa-Marie Bernal
  • Teresa L Micotto
  • Erika L Smith
  • James N Wilson
چکیده

A set of spectrally diverse stilbazolium dyes was identified in an uptake assay using cultured brainstem and cerebellum cells isolated from e19 chicks. Pretreatment of cells with indatraline, a monoamine reuptake inhibitor, allowed identification of dyes that may interact with monoamine transporters. Two structurally related, yet spectrally segregated, probes, (E)-1-methyl-4-[2-(2-naphthalenyl)ethenyl]-pyridinium iodide (NEP+, 3A) and (E)-4-[2-(6-hydroxy-2-naphthalenyl)ethenyl]-1-methyl-pyridinium iodide (HNEP+, 4A), were selected and further investigated using HEK-293 cells selectively expressing dopamine, norepinephrine or serotonin transporters. HNEP+ was selectively accumulated via catecholamine transporters, with the norepinephrine transporter (NET) giving the highest response; NEP+ was not transported, though possible binding was observed. The alternate modes of interaction enable the use of NEP+ and HNEP+ to image distinct cell populations in live brain tissue explants. The preference for HNEP+ accumulation via NET was confirmed by imaging uptake in the absence and presence of desipramine, a norepinephrine reuptake inhibitor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescent stilbazolium dyes as probes of the norepinephrine transporter: structural insights into substrate binding.

We report the synthesis, binding kinetics, optical spectroscopy and predicted binding modes of a series of sterically demanding, fluorescent norepinephrine transporter (NET) ligands. A series of bulky stilbazolium dyes, including six newly synthesized compounds, were evaluated to determine the effect of extending the molecular probes' 'heads' or 'tails'. Taking advantage of the dyes' charact...

متن کامل

Probing the functional limits of the norepinephrine transporter with self-reporting, fluorescent stilbazolium dimers.

A series of stilbazolium dimers were synthesized and investigated as sterically demanding ligands targeting the norepinephrine transporter (NET). The environmentally sensitive fluorescence of the dyes enables their use as self-reporting ligands; binding to and displacement from NET can be monitored by fluorescence microscopy.

متن کامل

Hoechst tagging: a modular strategy to design synthetic fluorescent probes for live-cell nucleus imaging.

We report a general strategy to create small-molecule fluorescent probes for the nucleus in living cells. Our strategy is based on the attachment of the DNA-binding Hoechst compound to a fluorophore of interest. Using this approach, simple fluorescein, BODIPY, and rhodamine dyes were readily converted to novel turn-on fluorescent nucleus-imaging probes.

متن کامل

Long fluorescence lifetime molecular probes based on near infrared pyrrolopyrrole cyanine fluorophores for in vivo imaging.

Fluorescence lifetime (FLT) properties of organic molecules provide a new reporting strategy for molecular imaging in the near infrared (NIR) spectral region. Unfortunately, most of the NIR fluorescent dyes have short FLT typically clustered below 1.5 ns. In this study, we demonstrate that a new class of NIR fluorescent dyes, pyrrolopyrrole cyanine dyes, have exceptionally long FLTs ranging fro...

متن کامل

Turn on Fluorescent Probes for Selective Targeting of Aldehydes

Two different classes of fluorescent dyes were prepared as a turn off/on sensor system for aldehydes. Amino derivatives of a boron dipyrromethene (BDP) fluorophore and a xanthene-derived fluorophore (rosamine) were prepared. Model compounds of their product with an aldehyde were prepared using salicylaldehyde. Both amino boron dipyrromethene and rosamine derivatives are almost non-fluorescent i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 9 7  شماره 

صفحات  -

تاریخ انتشار 2011